

NAM: the contribution of in vitro methods

Prof. Saadia Kerdine-Römer

Faculté de Pharmacie, Université Paris Saclay INSERM UMR-996

FRANCOPA Novembre22nd, 2022

THE 3Rs AND ALTERNATIVE METHODS

Russell and Burch in 1959, originated the concepts of 3R

in 'The Principles of Humane Experimental Technique'

An alternative method allows:

- > Replace animal testing
- > Reduce the use of animals in specific tests
- > Refine a technique to improve animal welfare

Laboratory animals in science is a subject of intense public debate based on legal, moral, and ethical assessments

THE 3RS AND ALTERNATIVE METHODS

The societal context

- Very active animal welfare groups, some of wich are "extremist"
- Press compaigns and political lobbying
- Parliamentary investigations: OPECST report 21 mars 2019

"THE USE OF ANIMALS IN RESEARCH AND ALTERNATIVES TO ANIMAL EXPERIMENTATION: CURRENT SITUATION AND PERSPECTIVES"

The regulatory context

Directive 2010/63/EU on the protection of animals used for scientific purposes:

- Applies to all uses (basic, applied research efficacy and hazard assessment of substances)
- Applies to vertebrate animals, including embryonic forms and cephalopods
- Reinforces the 3Rs principle

Need to develop new alternative methods
Problem of the reliability of the methods already developed

THE 3RS AND ALTERNATIVE METHODS

The societal context

- Very active animal welfare groups, some of wich are "extremist"
- Press copaigns and political lobbying
- Parliamentary intestigations: OPECST report 21 mars 2019

"THE USE OF ANIMALS IN RESEARCH AND ALTERNATIVES TO ANIMAL EXPERIMETATION: CURRENT SITUATION AND PERSPECTIVES"

OPECST: Office parlementaire d'évaluation des choix scientifiques et technologiques

The regulatory context

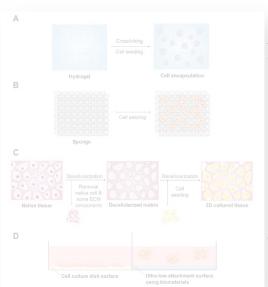
Directive 2010/63/EU on the protection of animals used for scientific purposes:

- Applies to all uses (basic, applied research, efficacy and hazard assessment of substances)
- Applies to vertebrate animals, including embryonic forms and cephalopods
- Reinforces the 3Rs principle

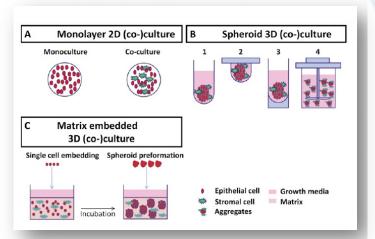
Problem of the reliability of the methods already developed?

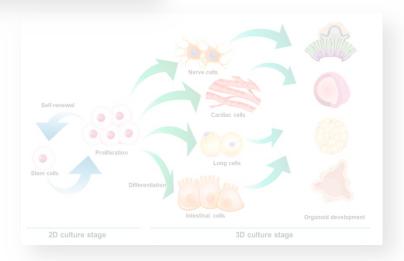
Need to develop new alternative methods and strategy

New Approach Methodologies (NAMs)


CELLS SOURCES & ROLE OF THE MICROENVIRONMENT

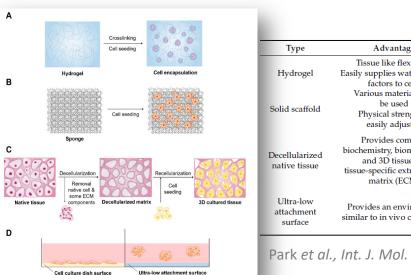
- CELL LINES
- PRIMARY CELLS
- STEM CELLS


- 2D
- 3D


ORGANOIDS

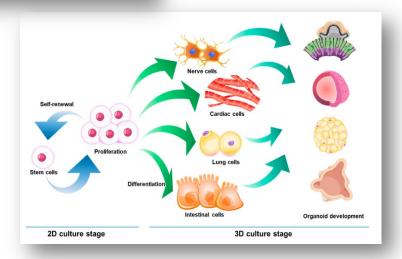
Туре	Advantage	Disadvantage
Hydrogel	Tissue like flexibility Easily supplies water-soluble factors to cells	Low mechanical resistance
Solid scaffold	Various materials can be used Physical strength is easily adjusted	Difficulty in homogeneous dispersion of cells
Decellularized native tissue	Provides complex biochemistry, biomechanics and 3D tissues of tissue-specific extracellular matrix (ECM)	Decrease of mechanical properties (roughness, elasticity, and tension strength) of the tissues a compared to the native group
Ultra-low attachment surface	Provides an environment similar to in vivo conditions	Difficulty in mass production Lack of uniformity between spheroids

Cellular Microenvironment

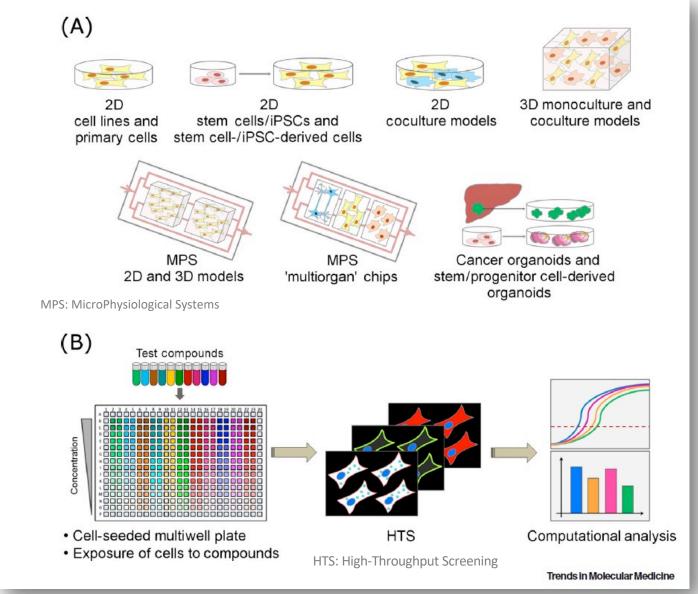

CELLS SOURCES & ROLE OF THE MICROENVIRONMENT

Two main definitions

(CEI, Octobre 2020)


- **a.** The cells self-organise
- in vitro into a 3D structure characteristic of the organ in vivo, (2) the resulting structure is made up of multiple cells present in that particular organ (3) and the cells perform at least some of the functions that they normally perform in that organ.
- **b.** Organoids are 3D structures derived from stem cells or progenitor cells that, at a certain point in time progenitor cells that, on a much smaller scale, recreate important aspects of the 3D anatomy and multicellular repertoire of their physiological counterparts, and can recapitulate basic tissue functions.

ORGANOIDS

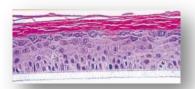


Type	Advantage	Disadvantage
Hydrogel	Tissue like flexibility Easily supplies water-soluble factors to cells	Low mechanical resistance
Solid scaffold	Various materials can be used Physical strength is easily adjusted	Difficulty in homogeneous dispersio of cells
Decellularized native tissue	Provides complex biochemistry, biomechanics and 3D tissues of tissue-specific extracellular matrix (ECM)	Decrease of mechanical properties (roughness, elasticity, and tension strength) of the tissues a compared to the native group
Ultra-low attachment surface	Provides an environment similar to in vivo conditions	Difficulty in mass production Lack of uniformity between spheroids

Park et al., Int. J. Mol. Sci., 2021

HUMAN CELL-BASED IN VITRO MODELS

ADVANTAGES AND LIMITATIONS OF CELL-BASED IN VITRO METHODS

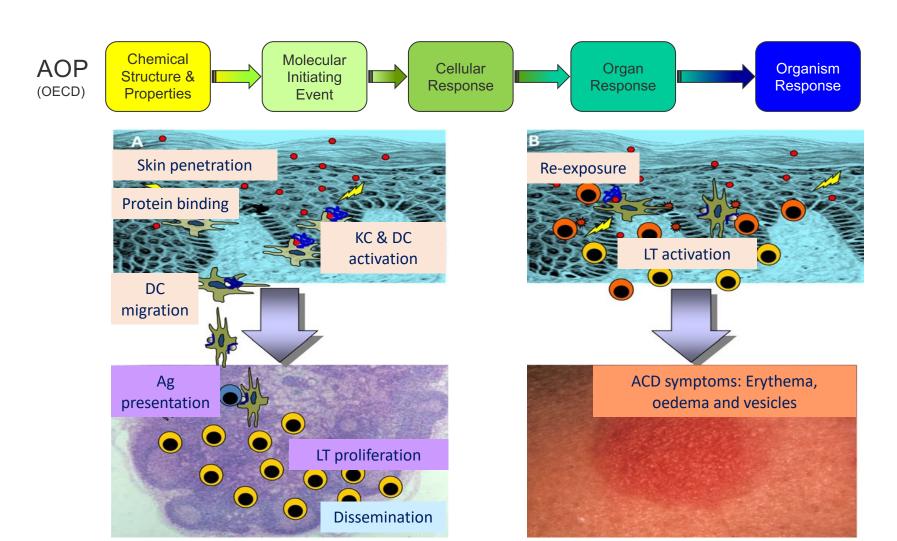

Advantages	Limitations	Potential solutions
Cost effective	No pharmacokinetics/toxicokinetics	Combination with PBPK/TK modeling
Higher/high throughput	Not all mechanisms of toxicity can be covered: limited possibilities to address complex mechanisms of organ damage	More complex organotypic models and use of complementary in vitro assays that cover different mechanisms of organ damage
Human cells applicable: eliminates interspecies variability	Limited possibilities to address interactions between different cell types in tissues	Coculture models and iPSC-derived organoids
Suitable for supporting personalized therapies (patient-specific iPSCs and cancer organoids)	Limited possibilities to address organ-to-organ interactions	mechanisms of organ damage Coculture models and iPSC-derived organoids Multiorgan MPS
Suitable for detailed examination of toxicity mechanisms/easy experimental manipulation	Cellular functions may be altered	Improved cell and cell culture models
	The concentration response of cells may be altered	Improved cell and cell culture models and use of scaling factors in PBPK/TK modeling-based reverse dosimetry

ALTERNATIVES METHODS VALIDATED: CHEMICAL SAFETY ASSESSMENT

Genotoxicity

Corrosion/irritation

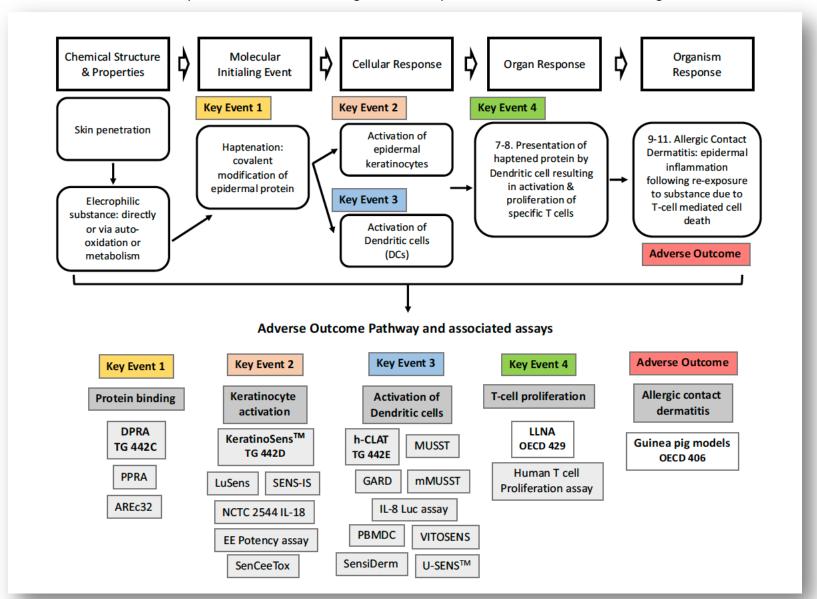
Phototoxicity

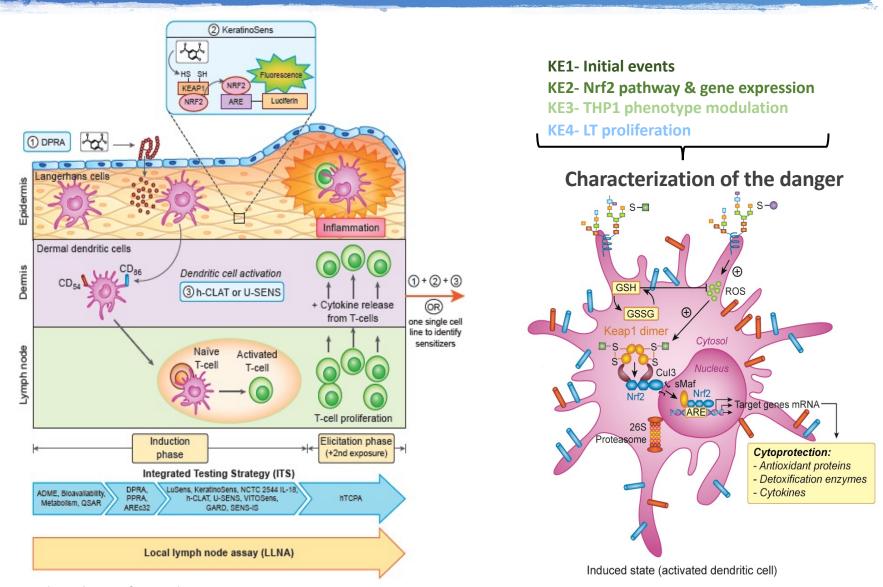


Toxicity data generally required in regulatory dossiers of chemical substances

Required toxicity data (by endpoint)	OECD test guideline methods using animals	Animal-free OECD test guideline methods
Acute toxicity (3 routes)	401, 402, 403, 436, 425, 423, 420, 433	
Irritation/corrosion (eye and skin)	404, 405	460, 437, 438, 491, 492, 430, 431,435, 439
Sensitization	406, 429, 442A, 442B	442C, 442D, 442E
Repeated dose toxicity	407, 408, 409, 410, 411, 412, 413, 452	
Genotoxicity	488, 489, 483, 478, 475, 474, 473, 485, 484	471, 490, 487, 476
Carcinogenicity	451, 453	
Reproductive toxicity (fertility and developmental toxicity)	443, 414, 415, 416 (421 and 422 for screening only)	
(Neurotoxicity) ^a	424, 419, 418, (426)	

^a Only few regulations and directives require neurotoxicity data.


SKIN SENSITIZATION AND KEY EVENTS


from Kimber et al., Tox. Sciences (2011)

SKIN SENSITIZATION AND AOP

The 7th Amendment to the Cosmetics Directive prohibited the animal testing for cosmetic products since 2004 and cosmetic ingredients since March 2009.

INTEGRATION OF A SET OF ALTERNATIVE TESTS WITHIN THE SAME CELL

